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Abstract

We derive the two-dimensional shell equations for a circular cylindrical shell by means of an asymptotic
expansion of the three-dimensional elastic state. The assumptions involved are of mathematical character only and

concern the continuity, di�erentiability and convergence of the series used. A numerical comparison between the
frequencies obtained by the two-dimensional shell equations and the three-dimensional state in the case of free
vibrations is presented in a few examples. # 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

Elastic shell theories are usually derived from the equations of elasticity augmented by one or more
assumptions concerning the state of stress, deformation or elastic energy. Usually the `Kirchho�
hypothesis' is invoked in one way or another (Simmonds, 1997). In this paper the two-dimensional
theory of thin elastic circular cylindrical shells is derived solely from the three-dimensional theory of
elasticity using the method of asymptotic expansion. Any assumption made is of purely mathematical
character concerning continuity, di�erentiability and convergence of series. There is no `Kirchho�
hypothesis' or any other hypotheses invoked, either in the constitutive relations or elsewhere. It is an
exact theory. Many might ®nd the theory overly fancy and the mathematics unnecessarily elaborate, but
that is how things are, it cannot be otherwise. I do not claim that any re®ned shell theory for cylindrical
shells is strongly needed, but I do claim that a linear shell theory built on First Principles only, is
something new and has an immediate appeal.

The method of asymptotic expansion of the exact three-dimensional linear theory of elasticity has
earlier been applied to thin plates (Brod, 1972; Niordson, 1979), and in this paper an extension to
circular cylindrical shells is presented. Following that method, we expand all quantities in terms of a
small parameter h/L, where 2h is the thickness of the shell and L is a characteristic length of the
deformation pattern and obtain a sequence of shell equations, each more accurate than the preceding
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one. Here L can be taken to be the radius R of the shell, or as in the case of free vibrations, the
wavelength c=o , where c is the velocity of sound in the material and o the angular frequency.

With this method we obtain the equations of equilibrium as a power series in h, where the coe�cients
are linear di�erential operators on the displacement functions. The order of the theory will be denoted
by n, the highest power at which the series is truncated.

The zero-order equations are identically satis®ed, and there is therefore no zero-order terms and no
zero-order theory. In the ®rst-order theory (n=1), after cancelling a common factor, we ®nd the well-
known membrane theory of cylindrical shells, in which the solution is independent of the thickness of
the shell.

The second-order theory (n=2) gives an unexpected result: there are no terms of order h in the
asymptotic expansion. The result is certainly not trivial, since it has been generally accepted (Novoshilov
and Finkel'shtein, 1943; Koiter, 1960; Niordson, 1971) that by using the uncoupled Love±Kirchho�
strain energy expression, errors of order jh=Rj are introduced, where R is the (smallest) radius of
principal curvature. Now we ®nd that this is not the case for cylindrical shells.1 Furthermore, by careful
analysis, we ®nd that, like in the case of ¯at plates, only odd numbers of n contribute to the asymptotic
expansion. For ¯at plates, this was an obvious consequence of the symmetry properties in normal
direction. For cylindrical shells, where no such symmetry is present, it follows from the analysis.

The following iteration (n=3) contains terms of order h2, and is therefore the lowest order bending
theory of cylindrical shells. It does not coincide with any earlier proposed bending theory, as far as the
author is aware, but the di�erence from, for example, the Morley±Koiter equations (Morley, 1959;
Koiter, 1968) seems to be insigni®cant, at least numerically.2

With the formulas and procedures derived in this paper we can proceed to obtain any higher-order
theory. Thus the ®fth order theory (n=5) is also derived and presented here. It includes terms of order
h4 and in the numerical examples this theory shows a considerable improvement of accuracy over the
classical shell theory for su�ciently thin shells. But this is as far as we go. Higher order theories are not
derived in this paper, if only for the fact that the equations and formulas become rather awkward to
handle. Also the order of the di�erential equations increases. This was also found to be the case for
plates, however in that case, with a single dependent variable (the normal displacement) and a single
di�erential operator (the Laplacian), it was possible to ®nd a way by which the in®nite series could be
summed, hereby reducing the order of the ®nal equation to a fourth-order di�erential equation, the
same order as the Kirchho� equation. For cylindrical shells with three dependent variables (the
displacement components) and two di�erential operators (the partial derivatives in the middle surface),
unfortunately, no such reduction has been found.

The method derived can be applied to statically loaded shells as well as to shells in free vibrations,
but the main part of the analysis is devoted to the dynamic case of free vibrations.

The method of asymptotic expansion yields an exact solution (provided the series converge), which in
the limit coincides with a solution of the three-dimensional problem. But the truncated asymptotic series
is of course only an approximation. To illustrate the accuracy of the two-dimensional shell theories,
some numerical results have been obtained for the third- and ®fth-order theory and compared with a
particular (numerical) solution to the three-dimensional equations of motion of an in®nitely long
cylinder in free vibrations.

These examples show that the `re®ned' ®fth-order theory is far superior to the classical third-order
theory for su�ciently thin shells. However, they also show very clearly that shell theories are limited to
thin shells.

1 We conjecture that the same holds true for all shells.
2 Niordson, F.I., 1985, p. 229.
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2. Basic equations

Let xi � �x, y, z� be normal coordinates,3 where z is the distance from the middle surface, z=+h
being the outer surface and z=ÿh the inner surface of the shell. The coordinates x and y on the middle
surface are rectangular, x parallel to the axis of the cylinder and y the arc-length in tangential direction.
The boundary will be de®ned by the normals to the middle surface along one or two simple closed
curves C on the middle surface.

We shall furthermore assume that the shell performs small harmonic vibrations of amplitude ui �
�u, v, w� and angular frequency o . Through this frequency we de®ne a wavelength L � c=o , where c is
the velocity of sound in the material, which is supposed to be homogeneous, isotropic and linearly
elastic, following Hooke's law.

In the normal coordinate system the covariant metric tensor gij has the components4

gij �

0BB@
1 0 0

0 �1� z=R�2 0

0 0 1

1CCA
and the corresponding contravariant components are

gij �

0BB@
1 0 0

0 �1� z=R�ÿ2 0

0 0 1

1CCA
where R is the radius of the middle surface.

Also the Christo�el symbols
� i
jk

	
are functions of z, however, we ®nd that all vanish, except the

following ones(
3

22

)
� ÿ1� z=R

R

(
2

23

)
�
(

2

32

)
� 1=R

1� z=R

For given conditions at the boundary the amplitude functions will depend on the thickness of the
shell element, and this dependence will be represented by the following asymptotic expansion,

ui�x, y, z� �
X1
n�0

ui�n��x, y, z�en

for the contravariant components. Here the dimensionless number

3 Latin indices are used for the range 1, 2, 3.
4 Niordson, F.I., 1985, p. 48.
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e � h=L �1�
is assumed to be small in comparison with unity.

The functions ui�n��x, y, z� are now expanded in Taylor series at z = 0, i.e.

ui�x, y, z� �
X1
n�0

X1
m�0

1

m!
U i
�n,m��x, y�zmen

or

ui �
X1
n�0

X1
m�0

1

m!
U i
�n,m�z

men

where

Ui
�n,m� �

@mui�n�
@zm
�x, y, 0� n, m � 0, 1 . . .

are the partial derivatives of ui�n� with respect to z at the middle-surface. It follows that the
displacements of the middle-surface, with which the two-dimensional theory shall deal, are given by

ui�x, y, 0� �
X1
n�0

U i
�n,0�e

n

In the following, whenever convenient, we shall use u, v, w to denote ui and U, V, W to denote Ui.
The stress tensor sij�x, y, z� is given in terms of the displacements by Hooke's law,

sij � G
ÿ
Diui �D jui � mgijDku

k
�

where G is the shear modulus. The script letter D denotes the covariant derivative (or contravariant
derivativeÐas the case may be) in three dimensions.

We have also used the shorter notation for the following combination

m � 2n
1ÿ 2n

of Poisson's ratio n.
Writing the stresses in dimensionless form

Sij � Diu j �D jui � mgijDku
k �2�

we have only one material constant (m) left in our formulas. Note that for n � 1=3 the number m � 2.
The stresses are expanded in the same way as the displacements,

Sij�x, y, z� �
X1
n�0

X1
m�0

1

m!
sij�n,m��x, y�zmen �3�

The equations of motion are

DiSij � Luj � 0 �4�
where
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L � ro 2=G

The dependence of L on e is given by

L �
X1
n�0

L�n�en

Using (2) and (4) the equations of motion may be expressed in terms of the displacements

DiDiu j �DiD jui � mD jDku
k � Luj � 0

Expanding the covariant derivatives, we get the following three equations

@2u

@y2
� 1

R

�
1� z

R

��
@u

@z
� @w
@x

�
�
�
1� z

R

�2
 
2
@2u

@x2
� @2v

@x @y
� @2w

@x @z
� @

2u

@z2

!

� m
�
1� z

R

�"
1

R

@w

@x
�
�
1� z

R

� 
@2u

@x2
� @2v

@x @y
� @ 2w

@x @z

!#
� L

�
1� z

R

�2

u � 0 �5�

3

R

@w

@y
�
�
1� z

R

� 
2
@2v

@y2
� @ 2u

@x @y
� @2w

@y @z

!
� 3

R

�
1� z

R

�2 @v

@z
�
�
1� z

R

�3
�
@2v

@x2
� @

2v

@z2

�

� m

"
1

R

@w

@y
�
�
1� z

R

� 
@2w

@y @z
� @

2v

@y2
� @2u

@x @y

!#
� L

�
1� z

R

�3

v � 0 �6�

and

@2w

@y2
ÿ 2

w

R2
� 2

R

�
1� z

R

��
@w

@z
� @v
@y

�
�
�
1� z

R

�2
 
2
@ 2w

@z2
� @2v

@y @z
� @2u

@x @z
� @

2w

@x2

!

� m

"
ÿ w

R2
� 1

R

�
1� z

R

�
@w

@z
�
�
1� z

R

�2
 
@2w

@z2
� @2v

@y @z
� @2u

@x @z

!#
� L

�
1� z

R

�2

w � 0 �7�

Substituting the displacements in the equations of motion, and equating the coe�cients of all powers
of z and e to zero, the equations of motion (5)±(7) generate the following relations between the
derivatives,

�2� m�m�mÿ 1�
R2

d2xU�n,mÿ2� � 2�2� m�m
R
d2xU�n,mÿ1� �

�
�2� m�d2x � d2y �

m2

R2

�
U�n,m�

� 1� 2m

R
U�n,m�1� �U�n,m�2� � �1� m�

�
m�mÿ 1�

R2
dxdyV�n,mÿ2� � 2

m

R
dxdyV�n,mÿ1� � dxdyV�n,m�

� m2

R2
dxW�n,mÿ1� � 1� 2m

R
dxW�n,m� � dxW�n,m�1�

�
�
Xn
r�0

L�r�

�
m�mÿ 1�

R2
U�nÿr,mÿ2�

� 2
m

R
U�nÿr,mÿ1� �U�nÿr,m�

�
� 0

�8�
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�1� m�
�
m

R
dx@yU�n,mÿ1� � dx@ yU�n,m�

�
� m�mÿ 1��mÿ 2�

R3
d2xV�n,mÿ3� � 3

m�mÿ 1�
R2

d2xV�n,mÿ2�

� m

R

�
3d2x � �2� m�d2y ÿ

m2 ÿ 1

R2

�
V�n,mÿ1� �

�
d2x � �2� m�d2y � 3

m�m� 1�
R2

�
V�n,m�

� 3
m� 1

R
V�n,m�1� � V�n,m�2� � m� 3� m�m� 1�

R
dyW�n,m� � �1� m�dyW�n,m�1�

�
Xn
r�0

L�r��
m�mÿ 1��mÿ 2�

R3
V�nÿr,mÿ3� ÿ 3m�mÿ 1�

R2
V�nÿr,mÿ2� � 3

m

R
V�nÿr,mÿ1� � V�nÿr,m�� � 0

�9�

�1� m�
�
m�mÿ 1�

R2
dxU�n,mÿ1� � 2

m

R
dxU�n,m� � dxU�n,m�1�

�
� m�1� m� ÿ 3ÿ m

R2
dyV�n,mÿ1�

� 2
m�m� 1� ÿ 1

R
dyV�n,m� � �1� m�dyV�n,m�1� � m�mÿ 1�

R2
d2xW�n,mÿ2� � 2

m

R
d2xW�n,mÿ1�

�
�
d2x � d2y � �2� m� m

2 ÿ 1

R2

�
W�n,m� � �2� m�

�
1� 2m

R
W�n,m�1� �W�n,m�2�

�

�
Xn
r�0

L�r�

�
m�mÿ 1�

R2
W�nÿr,mÿ2�: � 2

m

R
W�nÿr,mÿ1� �W�nÿr,m�

�
� 0

�10�

respectively. Here dx and dy are the di�erential operators @=@x and @=@y, respectively.
From Hooke's law (2) and the expansion (3) the stress components are found to be

S11
�n,m� �

m

R
S11
�n,mÿ1� � �2� m�m

R
dxU�n,mÿ1� � �2� m�dxU�n,m� � m

m

R
dyV�n,mÿ1� � mdyV�n,m�

� m
m� 1

R
W�n,m� � mW�n,m�1�

S12
�n,m� � 2

m

R
S12
�n,mÿ1� �

m�mÿ 1�
R2

S12
�n,mÿ2� � dyU�n,m� �

m�mÿ 1�
R2

dxV�n,mÿ2� � 2
m

R
dxV�n,mÿ1� � dxV�n,m�

S22
�n,m� � 3

m

R
S22
�n,mÿ1� � 3

m�mÿ 1�
R2

S22
�n,mÿ2� �

m�mÿ 1��mÿ 2�
R3

S22
�n,mÿ3� � m

m

R
dxU�n,mÿ1�

� mdxU�n,m� � �2� m�
�
m

R
dyV�n,mÿ1� � �2� m�dyV�n,m�

�
� m�m� 1� � 2

R
W�n,m� � mW�n,m�1�

S31
�n,m� � U�n,m�1� � dxW�n,m� �11�

S32
�n,m� � 2

m

R
S32
�n,mÿ1� �

m�mÿ 1�
R2

S32
�n,mÿ2� �

m�mÿ 1�
R2

V�n,mÿ1� � 2
m

R
V�n,m� � V�n,m�1� � dyW�n,m� �12�
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S33
�n,m� �

m

R
S33
�n,mÿ1� � m

m

R
dxU�n,mÿ1� � mdxU�n,m� � m

m

R
dyV�n,mÿ1� � mdyV�n,m�

� m�2� m� � m
R

W�n,m� � �2� m�W�n,m�1�
�13�

The boundary conditions at the free surfaces z �2h are given by

Si3�x, y,� h� � Pi
��x, y�

Si3�x, y,ÿ h� � Pi
ÿ�x, y� �14�

where Pi
� and Pi

ÿ are the external loads on the outer and inner surface of the cylinder, respectively.
The static problem of an externally loaded cylindrical shell requires that we take L � 0 and give the

external forces Pi
� and Pi

ÿ on the outer and inner surface of the cylinder as functions of x and y.
For the dynamic problem of free vibrations, we keep L but take the external forces Pi

� and Pi
ÿ to be

equal to zero.
The further treatment of both cases is quite similar. The static problem leads to a system of three

inhomogeneous di�erential equations with a unique solution. The dynamic one leads to a system of
three homogeneous di�erential equations, i.e. an eigenvalue problem. In both cases the main e�ort lies
in determining the coe�cients of the displacement functions and their determinant.

To avoid a tedious repetition we shall con®ne our further analysis to the case of free vibrations.
Now, assuming that the external forces on the outer and inner surfaces vanish, we have

Xn
r�0

�21�nÿr
�nÿ r�! S

i3
�nÿr,r�L

nÿr � 0 i � 1, 2, 3 n � 0, 1, . . . �15�

These are six boundary conditions for each value of n, three for the outer surface (the plus sign) and
three for the inner surface (the minus sign).

The basic equations, from which the two-dimensional shell equations can be obtained, are now
derived. In the next section, we shall proceed by eliminating the unknown derivatives.

3. Elimination of the derivatives

In order to obtain the two-dimensional equations for the shell, we must eliminate all derivatives with
respect to z by expressing Ui

�n,m� for m>0 in terms of Ui
�r,0� for r � 0, 1, 2, . . . , n.

Consider the following matrix,2666664
Ui
�0,0� Ui

�0,1� Ui
�0,2� . . .

Ui
�1,0� Ui

�1,1� Ui
�1,2� . . .

Ui
�2,0� Ui

�2,1� Ui
�2,2� . . .

. . . . . . . . . . . .

3777775
The ®rst column contains the `given' functions, in terms of which all the remaining functions are to be

expressed. By following the `slash-order' indicated by the Italian numbers in the diagram below, we can
determine any derivative in terms of zero-order derivatives, since it will depend only on earlier derived
functions, all of which are already expressed in terms of the zero-order derivatives (m = 0).

F.I. Niordson / International Journal of Solids and Structures 37 (2000) 1817±1839 1823



The elements in the second column of the matrix are the ®rst derivatives of the displacement
functions. They are found from the boundary conditions (15) in the following way. Since

Si3�x, y, z� �
X1
n�0

X1
m�0

1

m!
Si3
�n,m�z

men i � 1, 2, 3

we get at the outer and inner surface of the cylinder

Si3�x, y, 2h� �
X1
n�0

X1
m�0

1

m!
Si3
�n,m��2L�memen � 0 i � 1, 2, 3

which holds true ifXn
r�0

�2L�nÿr
�nÿ r�! S

i3
�r,nÿr� � 0 i � 1, 2, 3 n � 0, 1, 2 . . .

This can be written

Xnÿ1
r�0

�2L�nÿr
�nÿ r�! S

i3
�r,nÿr� � Si3

�n,0� � 0 i � 1, 2, 3 n � 0, 1, 2 . . .

The condition that the sum of the stresses on the outer and inner boundaries is zero, will therefore be

Xnÿ1
r�0

Lnÿr � � ÿ L�nÿr
�nÿ r�! Si3

�r,nÿr� � 2Si3
�n,0� � 0

With the help of the eqns (11)±(13) for m=0 we ®nd the elements of the second column from the
formulas

U�n,1� � ÿdxW�n,0� � 1

2

Xnÿ1
r�0

Lnÿr � � ÿ L�nÿr
�nÿ r�! S31

�r,nÿr�

V�n,1� � ÿdyW�n,0� � 1

2

Xnÿ1
r�0

Lnÿr � � ÿ L�nÿr
�nÿ r�! S32

�r,nÿr�

W�n,1� �
"
ÿ m

ÿ
dxU�n,0� � dyV�n,0�

�ÿ 1

R
W�n,0� � 1

2

Xnÿ1
r�0

Lnÿr � � ÿ L�nÿr
�nÿ r�! S33

�r,nÿr�

#,
�2� m�
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By this choice we have ensured that for each component the sum of the stresses on the outer and
inner surfaces vanishes. Later, in deriving the ®nal equations, we shall impose the condition that also
the di�erence does vanish, thus making sure that the stresses on both sides are zero.

The derivatives of order m>1, i.e. all elements in the third, fourth and higher number columns can be
found by solving the equations of equilibrium (8)±(10) for the highest-order derivative, thus obtaining
the derivatives of order m+2 from the lower-order derivatives.

To make the eliminations procedure clear, we shall give the ®rst steps in detail. Below, the numbers in
square brackets correspond to the (Italic) numbers in the table.

[1] The ®rst derivatives with respect to z of the zero-order functions Ui
�0,1� are found from the

boundary conditions (15), which for n=0 reduce to Si3
�0,0� � 0. With n=m=0 the eqns (11)±(13) yield

U�0,1� � ÿdxW�0, 0�

V�0,1� � ÿdyW�0, 0�

W�0,1� � ÿ 1

2� m

�
mdxU�0,0� � mdyW�0,0� � m

R
W�0,0�

�
[2] The second derivative U�0,2� is found from the equation of motion (8), which for n=m = 0 reduces

to

U�0,2� � ÿ
4d2x � 2d2y � 3md2x � md2y

2� m
U�0,0� ÿ 2

1� m
2� m

dxdyV�0,0� ÿ m
R�2� m�dxW�0,0� ÿ L�0�U�0,0�

and similarly, V�0,2�, W�0,2� are found from eqns (9) and (10).
[3] The ®rst derivatives with respect to z of the ®rst-order functions U i

�1,1� are again found using the
boundary conditions (15), which for n = 1 yield Si3

�1,0� � 0. With n=1 and m=0 the eqns (11)±(13) yield

U�1,1� � ÿdxW�1, 0�

V�1,1� � ÿdyW�1, 0�

W�1,1� � ÿ 1

2� m

�
mdxU�1,0� ÿ mdyW�1,0� ÿ m

R
W�1,0�

�
The six derivatives of [2] and [3] completes the ®rst `slash'. This is all, what is needed for the lowest-

order theory. The derivatives in the next `slash' consisting of [4], [5], [6] are determined correspondingly,
and so on.

When the relevant derivatives have been deduced, the boundary conditions can be applied to ®nd the
di�erential equations for the shell. Now we impose the restriction that the di�erence of the stresses
between the outer and inner surface is zero. Their structure reveals that for each n they impose one
relation between the functions U�nÿr,r�, V�nÿr,r� and W�nÿr,r� for r � 0, 1, 2, . . . , n, indicating the economy
of the computational work of the `slash-order' sequence.

For n = 0 these relations are identically satis®ed, actually because they were used to derive the
functions U�0,1�, V�0,1� and W�0,1�. However, for all n>0 they given non-trivial results.
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4. The sequence of asymptotic equations

For n = 1 we get the ®rst non-trivial approximation to the equations of cylindrical shells. After
determining the ®rst nine derivatives

U�0,1�, V�0,1�, W�0,1�, U�0,2�, V�0,2�, W�0,2�, U�1,1�, V�1,1�, W�1,1�

which were deduced using the condition that the sum of the stresses at the outer and inner boundaries
did vanish, we apply the boundary conditions (15) again, but not to the di�erence between the stresses
at the outer and inner surface.

Xn
r�0

Lnÿr ÿ � ÿ L�nÿr
�nÿ r�! Si3

�nÿr,r� � 0 i � 1, 2, 3

This yields the following three equations

F1

�
U�0,0�, V�0,0�, W�0,0�

�� L�0�U�0,0� � 0

F2

�
U�0,0�, V�0,0�, W�0,0�

�� L�0�V�0,0� � 0

F3

�
U�0,0�, V�0,0�, W�0,0�

�� L�0�W�0,0� � 0 �16�

where the linear di�erential operators F1, F2 and F3 are given by

Fi�u, v, w� � 1

2� m

X
p

X
q

�
@

@x

� p�
@

@y

�q

fipq�x, y� i � 1, 2, 3

in which the functions fipq�x, y� are given in Appendix I.
These are the shell equations for the membrane state, and it is easily checked that they correspond

precisely to the classical shell equations taken in the limit h/R = 0, i.e. when no bending terms are present.
Proceeding in the way described in the last section, we get for n = 2, after determining the nine

additional derivatives,

U�0,3�, V�0,3�, W�0,3�, U�1,2�, V�1,2�, W�1,2�, U�2,1�, V�2,1�, W�2,1�

the equations

F1

�
U�1,0�, V�1,0�,W�1,0�

�� L�0�U�1,0� � L�1�U�0,0� � 0

F2

�
U�1,0�, V�1,0�,W�1,0�

�� L�0�V�1,0� � L�1�V�0,0� � 0

F3

�
U�1,0�, V�1,0�,W�1,0�

�� L�0�W�1,0� � L�1�W�0,0� � 0 �17�

with the same linear operators F1, F2 and F3 as before. Comparison of eqns (16) and (17) shows that
L�1� � 0. It is therefore clear that this iteration adds nothing of essence to the theory. In fact, as in the
case of ¯at plates, only odd numbered iterations provide non-trivial results.

For n = 3 we need in addition the following 12 derivatives,

U�0,4�, V�0,4�, W�0,4�, U�1,3�, V�1,3�, W�1,3�

U�2,2�, V�2,2�, W�2,2�, U�3,1�, V�3,1�, W�3,1�

F.I. Niordson / International Journal of Solids and Structures 37 (2000) 1817±18391826



and obtain the third-order equations of equilibrium

F1

�
U�2,0�, V�2,0�,W�2,0�

�� L2G1

�
U�0,0�, V�0,0�,W�0,0�

�� L�0�U�2,0� � L�2�U�0,0� � 0

F2

�
U�2,0�, V�2,0�,W�2,0�

�� L2G2

�
U�0,0�, V�0,0�,W�0,0�

�� L�0�V�2,0� � L�2�V�0,0� � 0

F3

�
U�2,0�, V�2, 0�,W�2,0�

�� L2G3

�
U�0, 0�, V�0,0�, W�0,0�

�� L�0�W�2,0� � L�2�W�0,0� � 0 �18�

where the linear di�erential operators G1, G2, and G2 are given by

Gi�u, v, w� � 1

3�2� m�3
X
p

X
q

�
@

@x

� p�
@

@y

�q

gipq�x, y�

in which the functions gipq�x, y� are given in Appendix I.
In the same way as we could conclude from the second-order iteration that L�1� � 0, we ®nd that the

fourth-order iteration implies that L�3� � 0. Next non-trivial iteration occurs for n = 5. We ®nd after
computing all relevant derivatives that

F1

�
U�4,0�, V�4,0�,W�4,0�

�� L2G1

�
U�2,0�, V�2,0�,W�2,0�

�� L4H1

�
U�0,0�, V�0,0�,W�0,0�

�
� L�0�U�4,0� � L�2�U�2,0� � L�4�U�0,0� � 0

F2

�
U�4,0�, V�4,0�,W�4,0�

�� L2G2

�
U�2,0�, V�2,0�,W�2,0�

�� L4H2

�
U�0,0�, V�0,0�,W�0,0�

�
� L�0�U�4,0� � L�2�V�2,0� � L�4�V�0,0� � 0

F3

�
U�4,0�, V�4,0�,W�4,0�

�� L2G3

�
U�2,0�, V�2,0�,W�2,0�

�� L4H3

�
U�0,0�, V�0,0�,W�0,0�

�
� L�0� W�4,0� � L�2� W�2,0� � L�4�W�0,0� � 0

�19�

where the linear di�erential operators H1, H2, and H3 are given by

Hi�u, v, w� � 1

45�2� m�5
X
p

X
q

�
@

@x

�p�
@

@y

�q

hipq�x, y�

in which the functions hipq�x, y� are given in Appendix I.
Multiplying the eqn (18) by e2, eqn (19) by e4, etc. and adding all these equations to eqn (16), we get

F1�u, v, w� � h2G1�u, v, w� � h4H1�u, v, w� � Lu � � � � 0 �20�
where the dots indicate higher-order terms in the thickness h, and where the displacement functions u, v,
w are evaluated at the middle surface, i.e.

u � u�x, y, 0� v � v�x, y, 0� w � w�x, y, 0�
Similarly, we obtain the second and third equation of motion in the form

F2�u, v, w� � h2G2�u, v, w� � h4H2�u, v, w� � Lv � � � � 0 �21�
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F3�u, v, w� � h2G3�u, v, w� � h4H3�u, v, w� � Lw � � � � 0 �22�
where again, the dots indicate higher-order terms in the thickness.

The system of eqns (20)±(22) are the two-dimensional equations for cylindrical shells truncated at h4

with a relative error of order �h=L�6. Next approximation would require two more iterations, but we
stop here. One reason is that the equations grow in length with a factor of roughly 10 for each second
iteration and become rather unmanageable.

Written out, the three equations of motion for the lowest order bending theory of shells are

d2xu�
1ÿ n
2

d2y �
1� n
2

dxdyv� n
R
dxw� h2

6�1ÿ n�2
�
2n2d4xu� 2n2d2xd

2
yu�

�1ÿ n�3
R2

d2yu

ÿ n
2ÿ 9n� 6n2

R2
d2xu� 2n2d3xdyv� 2n2dxd3yvÿ

�2ÿ n�
ÿ
1ÿ 3n� n2

�
R2

dxdyvÿ 2ÿ 9v� 6v2

R3
dxw

ÿ 2ÿ 5n� n2

R
d3xw�

1ÿ n� 4n2 ÿ 2n3

R
dx@2yw

�
� 1ÿ n

2
Lu � 0

1� n
2

dxdyu� d2yv�
1ÿ n
2

d2yv�
1

R
dyw� h2

6�1ÿ n�2
�
2n2d3xdyu� 2n2dxd3yuÿ

3� nÿ 17n2 � 12n3

R2
dxdyu

� 2n2d2xd
2
yv� 2n2d4yvÿ

�2ÿ 3n��5ÿ 4n�
R2

d2yvÿ
10ÿ 26n� 15n2

R3
dyw� n�3ÿ n�

R
d3yw

� ÿ3� 9nÿ 6n2 � 2n3

R
d2xdyw

�
� 1ÿ n

2
Lv � 0

n
R
dxu� 1

R
dyv� w

R2
� h2

6�1ÿ n�2
�
2

n�1ÿ n��1� 3n�
R3

dxu� 3
n2

R
d3xu�

4ÿ 5n� n2 � 3n3

R
dxd

2
yu

� 5
n�1ÿ n�

R3
dyv� 3

2ÿ 4n� 3n2

R
d3yv�

2ÿ 7n� 11n2 ÿ 3n3

R
d2xdyv� 2�1ÿ n�2

�
d4xw� 2d2xd

2
yw� d4yw

�
� 2
�1ÿ n��1� 3n�

R4
w� 10ÿ 17n� 10n2

R2
d2yw�

2ÿ 2n� n2 � 2n3

R2
d2xw

�
ÿ 1ÿ n

2
Lw � 0

where Poisson's ratio n has been reinstated for a more convenient comparison with the shell equations
of other authors.

5. Boundary conditions

The conditions at the free surfaces 2h are already taken care of when deriving the asymptotic
equations of motion. It remains to formulate the conditions along the boundary curve, in case the shell
is not complete.

To have a well-posed mathematical problem, the number of boundary conditions and their order
must be properly related to the order of the di�erential equations.
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The lowest-order theory (the membrane shell theory) leads to a fourth order di�erential equation, and
only four boundary conditions can be satis®ed, e.g. we may prescribe only two of the three displacement
functions at each end of a cylindrical shell of ®nite length. This is a well-known property of the
membrane theory.

The third-order theory, which is the lowest-order shell theory that includes bending terms, leads to a
di�erential equation of order eight. The eight boundary conditions to a well-posed mathematical
problem are those well known from the classical shell theory and will not be repeated here.

Next non-trivial higher-order theory (n=5) leads to a di�erential equation of order ten. This means
for example that for a cylindrical shell of ®nite length, we should prescribe ®ve boundary conditions at
each end to have a well-posed mathematical problem.

For any higher-order theory special care has to be taken to describe the boundary conditions
properly. There is hardly any doubt associated with the meaning of a `free' boundary or a `clamped'
boundary, which refer to the absence of stresses or displacements, respectively, throughout the thickness
of the shell. But the term `simply supported' does not have such a well-de®ned meaning. Since the
asymptotic expansion is a true representation of the three-dimensional state, we are in a position to
prescribe the boundary conditions precisely as we do in the case of any three-dimensional body, but we
can only satisfy them approximately, the approximation depending on the order of our theory.

Let us for example consider a clamped boundary. Strictly speaking a clamped boundary must be
understood to mean that all displacements u�x, y, z�, v�x, y, z� and w�x, y, z� vanish at all points x, y of
the boundary throughout the thickness of the shell, i.e. for all ÿhEzEh. Thus, all the derivatives
@m=@zm of the displacements must vanish for all numbers m � 0, 1, 2, . . .. This can only be satis®ed up
to an order determined by the order of the di�erential equation. For the third-order theory we can
prescribe the function U�0,0� at the boundary (and similarly for the other two displacements). But since
U�0,1� � ÿdxW�0,0�, the derivative @u=@z can be replaced by the slope ÿ@w=@x. To prescribe the second
derivative @2u=@z2 we need a higher-order theory. But since the derivatives with respect to z of any
stress or displacement is determined in our analysis in terms of the two-dimensional displacements and
their derivatives with respect to x and y, we can accommodate the boundary condition with any
accuracy desired, provided that we have a theory of su�ciently high order.

Conditions are very similar for a free boundary. But the exact meaning of for instance a `simply
supported' boundary must be explained in terms of displacements and stresses throughout the thickness
of the shell.

For each new iteration the order of the di�erential equations increases, every new iteration permits
(and requires) a more detailed description of the displacements and stresses at the boundary. The so-
called three-dimensional boundary layers, which have been discussed to some extent in the literature are
a natural result of this. However, it would take us too far to pursue this further.

6. Numerical results

To determine the accuracy of the di�erent order shell theories, it is necessary to have an accurate
solution of the three-dimensional cylinder in at least a special but relevant case. For that purpose we
have computed the natural frequencies of an in®nitely long cylinder of arbitrary thickness vibrating in a
sinusoidal pattern in both directions from the three-dimensional equations of equilibrium.5

Let us assume that the displacements in the middle surface are given by

5 The method is described in Appendix II.
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u � A cos
px

R
cos

qy

R
; v � B sin

px

R
sin

qy

R
; w � C sin

px

R
cos

qy

R

For a complete shell the displacements must be periodic in y with the period 2pR and therefore q has
to be an integere0. The number p determines the wave-length of the deformation in axial direction and
cannot vanish, but is otherwise not restricted.

This displacement pattern satis®es all three equations of motion (20)±(22). When substituted into the
equations, we get a system of three linear and homogeneous equations for the coe�cients A, B and C.
The condition for a non-trivial solution (that the determinant of the system vanishes) determines the
eigenvalue L.

For a numerical evaluation let us take Poisson's ratio n � 1=3, which makes m � 2. In order to
compare the results with those of the Moreley±Koiter equations we introduce

l � 1ÿ n2

E
rR2o2 � 4�m� 1�

m� 2
L � 3L

For the case p= q=2 we get the results shown in Fig. 1, where the curve A gives the eigenvalue for
n = 3. The curve for the eigenvalue according to the Morley±Koiter equations6 coincides with curve A
and within the accuracy of the diagram it cannot be distinguished from the third-order theory. Curve B
gives the eigenvalue according to the re®ned shell theory corresponding to n=5. Curve C is the three-
dimensional solution, to which the two-dimensional shell solutions A and B can be compared.

Similar results are shown for a higher mode p= q=8 in Fig. 2, where the curves A, B and C have
the same meaning as above in Fig. 1. It is interesting to note that the lower-order theory n=3 gives an
upper bound and the higher-order theory n=5 a lower bound for the eigenvalue. We might expect that
next higher-order theory n=7 would again yield an upper bound for l. The same pattern appears, and
the same conclusions may be drawn, for all other cases investigated in this connection.

The diagrams illustrate both the improvement obtained by the higher-order theory but certainly also
the limitations of any shell theory.

The analysis predicts that in the third-order theory the relative error is proportional to �h=L�2 and in
the ®fth-order theory proportional to �h=L�4, when the shell is su�ciently thin. This would require the
functions

A �
�
l3
l
ÿ 1

���
h

L

�2

and B �
�
l5
l
ÿ 1

���
h

L

�4

to be independent of h for su�ciently thin shells. Here l3 is the eigenvalue according to the third-order
theory and l5 the eigenvalue according to the ®fth-order theory, while l is the exact eigenvalue.

Fig. 3 shows the functions A and B (in an arbitrary scale, di�erent for the two functions) evaluated
using the numerically computed value of l for the case p=q = 8. For curves A1 and B1 at ®rst-order
Runge±Kutta method was used to determine l and for the curves A2 and B2 a higher-order Runge±
Kutta was applied.

The result is as one would expect, except for the range 0 < h=R < 0:03 where clearly the accuracy of
the numerical determination of l is critical and insu�cient for this purpose.

6 Niordson, F.I., 1985 p. 259±262.
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Fig. 1. The eigenvalue l for the case p=q=2. Curve A: Present third-order theory and Morely±Koiter equations. Curve B:

Present ®fth-order shell theory. Curve C: Three-dimensional solution.

Fig. 2. The eigenvalue l for the case p=q=8. Curve A: Present third-order theory and Morely±Koiter equations. Curve B:

Present ®fth-order shell theory. Curve C: Three-dimensional solution.
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Appendix I

List of all non-vanishing functions f �p, q, r�, g� p, q, r�, h� p, q, r�
f111 � �2� 3m�v�x, y�

f110 � 2mw�x, y�=R

f120 � 4�1� m�u�x, y�

f102 � �2� m�u�x, y�

f211 � �2� 3m�u�x, y�

f220 � �2� m�v�x, y�

f201 � 4�1� m�w�x, y�=R

f202 � 4�1� m�v�x, y�

Fig. 3. The function A and B for the case p=q=8. Curve A1: The function A using a ®rst-order Runge±Kutta for l. Curve B1:

The function B using a ®rst-order Runge±Kutta for l. Curve A2: The function A using a higher-order Runge±Kutta for l. Curve
B2: The function B using a higher-order Runge±Kutta for l.
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f310 � ÿ2mu�x, y�=R

f301 � ÿ4�1� m�v�x, y�=R

g111 � �4� 3m��ÿ4ÿ 2m� m2�v�x, y�=R2

g131 � 4m2�1� m�v�x, y�

g112 � 2
ÿ
4� 10m� 12m2 � 5m3

�
w�x, y�=R

g122 � 4m2�1� m�u�x, y�

g113 � 4m2�1� m�v�x, y�

g110 � 4�1� m��ÿ4� m� 2m2�w�x, y�=R3

g120 � 2m�ÿ4� m� 2m2�u�x, y�=R2

g130 � 2�1� m��ÿ8ÿ 6m� m2�w�x, y�=R

g140 � 4m2�1� m�u�x, y�

g102 � �2� m�3u�x, y�=R2

g211 � ÿ2�12� 38m� 23m2 � 3m3�u�x, y�=R2

g221 � 2�ÿ12ÿ 18mÿ 6m2 � m3�w�x, y�=R

g231 � 4m2�1� m�u�x, y�

g222 � 4m2�1� m�v�x, y�

g213 � 4m2�1� m�u�x, y�

g201 � ÿ2�1� m��40� 28m� 3m2�w�x, y�=R3

g202 � ÿ4�1� m��4� m��5� 3m�v�x, y�=R2
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g203 � 2m�1� m��6� 5m�w�x, y�=R

g204 � 4m2�1� m�v�x, y�

g321 � ÿ
ÿ
16� 20m� 14m2 � 7m3

�
v�x, y�=R

g312 � ÿ
ÿ
32� 76m� 58m2 � 17m3

�
u�x, y�=R

g322 � ÿ8�1� m��2� m�2w�x, y�

g310 � ÿ2m�2� m��2� 5m�u�x, y�=R3

g320 � ÿ2
ÿ
8� 20m� 17m2 � 6m3

�
w�x, y�=R2

g330 � ÿ6m2�1� m�u�x, y�=R

g340 � ÿ4�1� m��2� m�2w�x, y�

g301 � ÿ10m�1� m��2� m�v�x, y�=R3

g302 � ÿ4�1� m��20� 23m� 8m2�w�x, y�=R2

g303 � ÿ6�1� m��8� 8m� 3m2�v�x, y�=R

g304 � ÿ4�1� m��2� m�2w�x, y�

h111 � ÿ�2816� 9800m� 12216m2 � 6586m3 � 1423m4 � 66m5�v�x, y�=�2R4�

h131 � ÿ�3784� 11972m� 14562m2 � 8331m3 � 1880m4 � 48m5�v�x, y�=�2R2�

h151 � 4m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h112 � �ÿ3056ÿ 4040m� 5076m2 � 12030m3 � 7505m4 � 1536m5�w�x, y�=�2R3�

h122 � �ÿ664ÿ 1028m� 2234m2 � 5505m3 � 3868m4 � 880m5�u�x, y�=�2R2�

h132 �
ÿ
ÿ 1024ÿ 2488mÿ 1532m2 � 422m3 � 735m4 � 238m5

�
w�x, y�=R
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h142 � 8m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�

h113 �
ÿ
ÿ 1000ÿ 1440m� 1368m2 � 3680m3 � 2375m4 � 497m5

�
v�x, y�=R2

h133 � 8m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h114 �
ÿ
272� 1784m� 3672m2 � 3338m3 � 1457m4 � 272m5

�
w�x, y�=R

h124 � 4m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�

h115 � 4m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h110 � ÿ�1� m��1728� 4336m� 3170m2 � 734m3 � 7m4�w�x, y�=R5

h120 � ÿm�1728� 4336m� 3170m2 � 734m3 � 7m4�w�x, y�=�2R4�

h130 � �ÿ2704ÿ 9040mÿ 10956m2 ÿ 5883m3 ÿ 1143m4 � 10m5�w�x, y�=R3

h140 � m�ÿ488ÿ 1630mÿ 1616m2 ÿ 427m3 � 17m4�u�x, y�=R2

h150 � ÿ2�1� m��648� 1488m� 1114m2 � 344m3 � 17m4�w�x, y�=R

h160 � 4m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�

h102 � 9�2� m�5u�x, y�=R4

h104 � 24�2� m�5u�x, y�=R2

h211 � �2880� 2256mÿ 9976m2 ÿ 14120m3 ÿ 6359m4 ÿ 946m5�u�x, y�=�2R4 �

h221 � ÿ�12896� 41136m� 47192m2 � 24656m3 � 5377m4 � 256m5�w�x, y�=�2R3�

h231 � �1056� 4336m� 6568m2 � 4665m3 � 1801m4 � 317m5�u�x, y�=R2

h241 � ÿ�2448� 7416m� 8512m2 � 4602m3 � 1139m4 � 74m5�w�x, y�=R

h251 � 4m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�
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h222 � �ÿ5112ÿ 10812mÿ 6570m2 � 57m3 � 1536m4 � 448m5�v�x, y�=�2R2�

h242 � 4m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h213 � �4008� 19116m� 33862m2 � 28371m3 � 11652m4 � 1896m5�u�x, y�=�2R2�

h223 � �ÿ3328ÿ 8776mÿ 8148m2 ÿ 2950m3 ÿ 99m4 � 158m5�w�x, y�=R

h233 � 8m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�

h224 � 8m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h215 � 4m2�1� m��ÿ24ÿ 28m� 3m2�u�x, y�

h201 � ÿ�1� m��4944� 17176m� 17720m2 � 7259m3 � 1036m4�w�x, y�=R5

h202 � ÿ�1� m��3704� 13396m� 14190m2 � 5974m3 � 881m4�w�x, y�=R4

h203 � �1� m��ÿ1736� 1664m� 6386m2 � 4645m3 � 1042m4�w�x, y�=R3

h204 � �1� m��384� 5924m� 8976m2 � 5010m3 � 977m4�w�x, y�=R2

h205 � 4�1� m��ÿ220ÿ 120m� 211m2 � 202m3 � 58m4�w�x, y�=R

h206 � 4m2�1� m��ÿ24ÿ 28m� 3m2�v�x, y�

h321 � ÿ�2224� 10160m� 15708m2 � 12600m3 � 6256m4 � 1321m5�v�x, y�=�4R3�

h341 � ÿ�3048� 10028m� 12290m2 � 7023m3 � 2039m4 � 341m5�v�x, y�=�2R�

h312 � �720ÿ 9664mÿ 40356m2 ÿ 48568m3 ÿ 24300m4 ÿ 4371m5�u�x, y�=�4R3 �

h322 � ÿ�6344� 23976m� 34860m2 � 24697m3 � 8707m4 � 1309m5�w�x, y�=R2

h332 � �8ÿ 3020mÿ 8198m2 ÿ 8073m3 ÿ 3761m4 ÿ 843m5�u�x, y�=�2R�

h342 � ÿ12�1� m��2� m�3�34� 27m�w�x, y�
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h323 � ÿ�6088� 20564m� 27434m2 � 18231m3 � 6359m4 � 1101m5�v�x, y�=�2R�

h314 � �8ÿ 1764mÿ 5526m2 ÿ 6129m3 ÿ 3021m4 ÿ 631m5�u�x, y�=�2R�

h324 � ÿ12�1� m��2� m�3�34� 27m�w�x, y�

h310 � 2m�2� m��120� 4mÿ 262m2 ÿ 101m3�u�x, y�=R5

h320 � ÿ�1536� 6880m� 12728m2 � 11550m3 � 5550m4 � 1069m5�w�x, y�=�2R4�

h330 � ÿ�m�324� 422m� 551m2 � 732m3 � 247m4�u�x, y�=R3�

h340 � ÿ�1536� 6120m� 9262m2 � 6636m3 � 2313m4 � 357m5�w�x, y�=R2

h350 � ÿ2m�1� m��314� 354m� 132m2 � 53m3�u�x, y�=R

h360 � ÿ4�1� m��2� m�3�34� 27m�w�x, y�

h301 � �1� m��2� m��356� 120mÿ 591m2 ÿ 202m3�v�x, y�=R5

h302 � ÿ�1� m��1704� 13796m� 19602m2 � 10578m3 � 1979m4�w�x, y�=R4

h303 � ÿ�1� m��752� 8552m� 12424m2 � 6767m3 � 1272m4�v�x, y�=R3

h304 � ÿ�1� m��3808� 11404m� 12096m2 � 5514m3 � 993m4�w�x, y�=R2

h305 � ÿ4�1� m��380� 937m� 956m2 � 445m3 � 95m4�v�x, y�=R

h306 � ÿ4�1� m��2� m�3�34� 27m�w�x, y�

Appendix II

The three-dimensional equations of motion for circular cylinder are given by (5)±(7). In the numerical
evaluation we take m � 2 and R = 1 for simplicity. Substituting the displacement functions

u � U�z� cos �px� cos �qy�

v � V�z� sin �px� sin �qy�
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w �W�z� sin �px� cos �qy�

into the equations of motion, we get after cancelling the common trigonometric factor, the following
system of ordinary second-order di�erential equations

U 00�z� � 1

1� z
U 0�z� ÿ 4p2 � q2

�1� z�2
U�z� � 3pqV�z� � 3pW 0�z� � 3p

1� z
W�z� � LU�z� � 0

V 00�z� � 3

1� z
V 0�z� ÿ

 
4q2

�1� z�2
� p2

!
V�z� � 3pq

�1� z�2
U�z� ÿ 3q

�1� z�2
W 0�z� ÿ 5q

�1� z�3
W�z�

� LV�z� � 0

4W 00�z� � 4

1� z
W 0�z� ÿ

 
4� q2

�1� z�2
� p2

!
W�z� � 3qV 0�z� ÿ 2q

1� z
V�z� ÿ 3pU 0�z� � LW�z� � 0

This system of equations is solved numerically by a Runge±Kutta procedure from z=ÿh to z=+h.
The initial values of the ®rst derivatives are determined from the condition that the stresses vanish at
z=ÿ h, i.e.

U 0� ÿ h� � ÿpW� ÿ h�

V 0� ÿ h� � q

�1ÿ h�2
W� ÿ h�

W 0� ÿ h� � p

2
U� ÿ h� ÿ q

2
V� ÿ h� ÿ 1

2�1ÿ h�W� ÿ h�

At the upper limit z=+h the stresses are found from

S31 � U 0�h� � pW�h�

S32 � V 0�h� ÿ q

�1� h�2
W�h�

S33 � 4W 0�h� � 2

1� h
W�h� � 2qV�h� ÿ 2pU�h�

For a given value of L we perform the Runge±Kutta integration three times, one for initial values
U�ÿh� � 1; V�ÿh� � 0;W�ÿh� � 0 another for the initial values U�ÿh� � 0; V�ÿh� � 1; W�ÿh� � 0 and a
third for U�ÿh� � 0; V�ÿh� � 0; W�ÿh� � 1.

The determinant of the three stresses for the three cases is now found as a function of L and then the
eigenvalue L is found from the condition that the determinant vanishes.
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